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Abstract—An original method for the calculation of transient temperature distribution in a semi-trans-
parent non-scattering condensed medium accounting for radiation and conduction is presented. This
method was developed in order to detail the influence of interface properties on temperature distribution.
Diffuse and specular reflections of the walis for three situations (contact of the vitreous boundaries with
the walls on both sides, any contact on both sides and contact on one side only) are compared for a grey
medium. Large differences are shown for the latter case. Concerning the situation with any contact between
walls and the STCM, a comparison between vitreous interfaces governed by Fresnel laws and diffuse
vitreous interfaces is given. Significant differences are pointed out. For a glass layer the differences cannot
be neglected, but they are reduced because of high absorptivity in the IR range.

INTRODUCTION

A GREAT deal of work has been reported concerning
combined heat transfer in the following simplified
situation: a semi-transparent non-scattering planar
grey layer bounded by grey diffusely emitting and
reflecting surfaces [1-4]. Subsequently, more realistic
situations were examined in the field of non-scattering
media. They are related to (i) the variation of optical
properties with wavelength [5, 6], (ii) the nature of
reflection at the boundary (specular reflection) [5],
(i) the mutual position of semi-transparent and
opaque boundaries [7, 8]. Nevertheless, for one-
dimensional systems, a general model taking into
account most real situations is needed.

This paper presents a theoretical study of unsteady
conductive and radiative heat transfer in a semi-trans-
parent condensed material (STCM), accounting for:
the variations of physical and optical properties of
the medium with wavelength and temperature; the
angular dependence of the reflection coefficient at the
boundaries ; the nature of reflection from the opaque
boundaries; the position of the opaque wall with
respect to the vitreous boundary.

Concerning the latter parameter, three situations
have been examined according to the following con-
siderations: the semi-transparent interfaces may be
separated from the opaque boundary by a gap or may
be in contact with it. The mutual position of both
STCM boundaries and opaque walls leads to the three
cases shown in Fig. 1.

(a) Conductive contact between the opaque wall
and both STCM boundaries. A number of studies
have been devoted to the analysis of heat transfer in
this situation. The effects of the nature of reflection

on the opaque wall on the temperature field have been
examined by Timmons and Mingle [9] and Lii and
Ouzisik [10] ; very small differences have been reported.

(b) No contact between opaque walls and the
STCM boundaries. In this case the reflection at the
vitreous boundary is governed by Fresnel laws. The
results are less numerous than for the previous case.
Stepanov et al. [7] have compared situations (a)
and (b).

(c) Conductive contact on one STCM boundary
and a non-conductive gap on the other side. Inves-
tigations concerning this situation are very poor.
Some data are given by Marchenko et al. (8]. Sig-
nificant temperature differences have been reported
as a function of the nature of reflection.

In the first part of this paper the theoretical model
and the numerical method are presented. The influ-
ence of the nature of reflection of the opaque wall on
the temperature distribution in the STCM is then
examined for the three cases (a), (b) and (c). Finally,
results related to a glass layer in the third situation (c)
are discussed.

THEORETICAL ANALYSIS

Mathematical formulation

We consider a flat layer of non-scattering semi-
transparent condensed material of thickness Z,
located between two specularly or diffusively reflect-
ing surfaces of temperatures T, and T, (T, > T,).
These opaque boundaries may either be in contact
with the vitreous interface (on one side or on both
sides) or placed at some distance away from the layer.
In the latter case the gap between the layer and the
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NOMENCLATURE
C, specific heat p density
E(x) (4exp (—x/wp"~*du c Stefan~Boltzmann constant
! intensity T optical depth, 7, = K,.Z
1° black body intensity To optical thickness
K number of directions g, W weight in the Gaussian formulation.
K, spectral absorption coefficient
n number of space intervals or total Subscripts
refractive index c conductive
n, spectral refractive index i space index
N AKjdn*eT} I spectral band, Av
q flux density k direction
t time r radiative
T temperature 1,2 boundaries 1 and 2
X reduced space coordinate, 1 —Z/Z, + hemisphere (+):0 < u < 1
A space coordinate — hemisphere (—): —1 < u<90.
Z,  depth of the medium.
Matrices
Greek symbols (E) order K diagonal matrix
e emissivity (N, (), (G) order K column matrices
0 reduced temperature, (T— 7,)/(T,—T>) (Id) identity matrix
A thermal conductivity (p,;) order K square matrix related to the
m angular variable, 1 <k < K (¢ = cos§) boundaries j = 1, 2.

a c
TIITIIIIITT

FiG. 1. Physical representation of the three situations occurring between walls and a vitreous medium
layer.

wall is filled with a non-conductive medium with a
refractive index of unity (Fig. 2).
At unsteady state the governing equations are

T .
pcpa = —div (qc ‘le) (1)
with
e L 1,
Z=0,1=0
0 n=Cos @
|*(o,p)/\zr(o,-p) :‘F Ocpel
(SIS I* (o, ) O<pe<-i
Z=Z,.1=1, \/

S T

FiG. 2. Physical model (case (c)).

o1 (8T\ . &T
sy (el I Bl o)
ar(az) 4z @
and

divg, = J divq,, dv=

0

o 1
2n f diV( f L (Z.w-17(Z, —miu du) dv 3)
0 0
where I} and I, are the spectral intensities in the
forward (u > 0) and backward (u < 0) directions.

The spectral radiative flux q., may be expressed as

div (g..) = K, [47!"31? (T(z))

—2n [J I (0, 4) exp (—t/u) du
0
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1
+L I (to,, — 1) exp [~ (to, —7)/u] du
+n? f " PT@)E, (e —7) dY
0

+n? J:'“'I:’(T(r'))a(r'—r) dz']] )
where
T, = 'r K,(T)dz
[+]

(K, is the spectral absorption coefficient), I? the
Planck function and

1
E\(x) =L exp (—x/wu~" dp.

For a given temperature profile T(Z), the spectral
intensities at the boundaries =0, I}(0,x) and
T=1o I, (te, —p) are solutions of the general
boundary conditions

I (to, 1) = 17 (0, 1) exp (— 1o, /1)

’o.v[? T
it [ BT ey (0 65 )

Jo
70, —p) = I (19, — 1) exp (— 1o, /1)

an | “EOD op (e ae @

1

10, ) =J; ()0, -y dw +Gi () (D

1

I (te,— ) = L P, WIS (o, 1) dp’ + G2 (p).

®

The functions p!(u, p") and Gi(y) (i = 1 and 2) are
related to the nature of reflection at boundaries 1 and
2 and to the type of contact with the vitreous interface
and the opaque wall.

Numerical solution

Previous numerical works about heat transfer in
condensed semi-transparent media may be examined
from the boundaries properties point of view.

Diffuse reflection from the opaque wall. The angular
variation of the spectral intensity can be ignored when
solving the equations. The theoretical studies of Heas-
let and Warming [11], Viskanta [12] and Hottel and
Sarofim [13] are related to this assumption. The zon-
ing method [13] was extended to problems with con-
stant specular reflection by Eckert and Sparrow [14].
Nevertheless, this method seems to be invalid for
modelling complex boundaries.

Angular variation of properties at the boundaries
(wall and vitreous interface). Various numerical
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methods have been developed: the spherical har-
monics method, the moment method, the normal
modes method [15], the discrete ordinates method [16]
and the Monte Cario method [17).

The discrete ordinate method appears to be most
commonly adopted for complex boundary conditions.
For example, where Fresnel reflection is concerned,
the hemisphere may be divided into several sectors in
order to take into account the angular variation of
the reflection coefficient [7] (Fig. 3). In addition, a
Gaussian quadrature is generally used to perform the
angular integration of the radiation intensity. Among
previous works in this field, two numerical techniques
were proposed : (i) numerical solution of the radiation
transfer equation by superposition of the homo-
geneous solutions satisfying the boundary conditions
on the intensities [5}; (ii) numerical solution of the
expanded equations, consisting of the development of
integration procedures. We chose the latter solution.

The integration of (1) with respect to time ¢ is
performed using the implicit finite difference Crank-
Nicolson method. Concerning the space coordinate,
a variable interval grid is used.

Methods for integrating equation (3) with respect
to wavelength angle and optical coordinate are the
following.

(1) Wavelength. The spectral variation of the
absorption coefficient is introduced using a band
model. If we define M bands (index I), equations (4)—
(8) may be formulated on each band by substitution
of index 7 for v, and equation (3) can then be expressed
as

M
divg, = Y divq,,. 9)
I=1
(2) Angular direction. A fixed number (K) of discrete
directions () is considered and the directional inte-
grals are replaced by weighted sums according to a
Gaussian formulation

Z o f ().

He€Au

J S(w) dp = (10)
uedpu

(3) Optical coordinate. The optical thicknesses
Tise-» Ta - -, Ty COITEspond to the space coordinates
Z,,...,Z,...,Zy. The integration of equations such
as

L (BT exp (= </} dp

are performed on the basis of a linear approximation
of LY{T(z)]. Concerning integrals

f”nil?[r(r')w.ar _var

the approximations are shown in Fig. 4. In order to
perform the integration at t = 1, L} is expressed as a
linear function of t at any point of the grid except for
t =1, where a second order polynomial approxi-
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Fi1G. 3. Reflection of radiation on an ideal vitreous interface.

mation is introduced. For 1 = 0 and t = 7, (bound-
aries), a linear approximation is used.

Numerical procedure

Attime t, q.,is calculated according to the following
steps.

Calculation of intensities at the interfaces. The
matrix formulation of equations (5) and (6) may be
written as

(52)
(62)

(1 (ro.)) = (EQUT (0) +(S7)
(17 (0)) = (EY{IT (z0.)) +(S7)

where (E,) is a diagonal K order matrix, the diagonal
elements of which are exp (—1o,/m); (S77) and (S7)
are vectors corresponding to the integrals of equations
(5) and (6). The discrete expressions of S} and S/
are developed in Appendix A.

The matrix formulations of equations (7) and (8)
are

(72)
(8a)

{7 0) = (p U O0)+(Gr)
(7 (o)) = (p2.)UF (7o) + (G-
The elements of square K order matrix (p,;) and
column matrix (G,,;) are given by the boundary prop-
erties. Taking into account the relations (5a)-(8a),
two K order linear systems are deduced and solved to
determine (/;* (0)) and (/; (z,,)) in order to calculate
divq,,.
The following K order linear system is obtained :

((d) = (p  NED (P2 EDIUT (0)) = (p1.)(ST)
+(G 1)+ (P MED(p2.)(S7) +(G20]

[(1d) = (P2 NED (P MEDIUT (T0.) = (p2.0(S])
+(G2)+ (P2 ) EN(p2)S ) +(G 1) (8D)

Calculation of div g ;. This calculation is performed
on the basis of equation (4) expressed on a band L. It
takes into account the intensities at the boundaries:

(7b)

A 4
- order 2 polynomlial N linear
- e
[~ P
0a linear l linear o3
D A — s ———e > —
c—?__—d—’__“
R S
PR .
Ao
] ]
1
; o
U ]
: — +> >
Ti=0 Ti-1 Ti Tiet Tn=To, T1=0 TN =To,
tor 2¢isN ~ 1 tfor =1 or i=N
(a) (b)

Fi1G. 4. Schematic of the space integration method.
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Table 1. Situations described by the model

Core of the STCM Boundaries
Variable t T v u T v "
Contact or
General no contact
formulation yes — yes  yes with walls
Parameters
K, — yes yes —
n, — yes yes —
P Cpnid — yes — —
Ly Piys &5 - — - — yes yes yes

I+ (0) and I} (z,,) and the temperature distribution
(using the Planck function ; Appendix A).

Model performances and limitations

The situations described by the previously for-
mulated model are listed in Table 1. Most of the
real situations encountered when studying heat trans-
fer in condensed one-dimensional semi-transparent
materials may be examined by this model.

The numerical solution proposed in this paper is
original and may be compared with the zonal method,
both being adapted for calculations using a variable
mesh grid. Nevertheless, some limitation of the latter
method is illustrated in the case of optically thick
material.

Let us consider a grey medium divided into a finite
number of elements AZ so that Az = KAZ » 1. At
any point of the medium, the divergence of the radi-
ative flux is expressed as

zonal method :

. TYZ, ) —2T*(Z)+T*(Z,\)

div qr(Zl) = —n? AZ

this method :

4 _ 4 4
divg(Z) = — _4_n2 TYZ.,) 2(ZZ()ZJ)+T (Z. l).

K
It may be noticed that the second formulation is

At At
——t -t
19T i1, i .+,

—

]
!
]
]
]
i
1
1

[}
i
1
1
t
]
!
|
1

Tl TP Tl T

(a)

in agreement with Rosseland’s approximation. This
difference between the two methods is due to the
approximation on I° in the vicinity of Z; (internal
AZ). For the zonal method, I°(Z) is constant for
Z~AZ[2 € Z, < Z,+ AZ[2; for the present method
I°(Z) is expressed as a second order polynomial in
the same range.

This observation is illustrated in Fig. 5. As pointed
out by Kunc [18], the accuracy of the calculations by
the zonal method depends on the optical depth Az;:
for Az; > 0.2, the numerical error in the intensity cal-
culation increases with At For example, it reaches
4% for Ar;=0.5. For At;<0.2 no difference be-
tween exact and numerically calculated intensities is
observed.

In the case of pure radiative transfer or strong
absorption at the boundary, a fine discretization is
needed to obtain a good representation of the tem-
perature profile’s local shape.

In order to compare the present numerical solution
with previous results, calculated values of the tem-
perature distribution are listed in Table 2 for the
example proposed by Saulnier [4]: a grey medium in
contact with two black walls at temperature T, = 500
Kand T, = 300 K, respectively (in addition 4 = Q0 and
1o = 1). Our results [19], obtained by dividing each
hemisphere in ten directions, are compared with data
published by Heaslet and Warming [11] and Saulnier
[4] for two grids. Results are in good agreement:

At 1 AT
19,(T¢T))

A

b -

Ti-1 Ti+l T

(b)

FIG. 5. Representation of I° at the mode t,. (a) Zonal method. (b) This method.
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Table 2. Numerical solution comparison

Heaslet and Saulnier [4] This study Saulnier [4] This study

X Warming [11} (23 nodes) (11 points) (103 nodes) (101 points)
0 382.36 382.85 381.68 382.04 381.80
0.1 395.75 396.42 396.19 396.49 396.50
0.2 406.70 407.29 407.16 407.32 407.30
0.3 417.57 416.78 416.69 416.78 416.76
04 424.67 425.41 425.36 425.41 425.39
0.5 433.75 433.45 433.43 433.45 433.43
0.6 441.73 441.06 441.08 441.06 441.05
0.7 447.76 448.39 448.44 448.39 448.38
0.8 456.01 455.56 455.63 455.56 455.54
09 463.29 462.84 462.99 462.82 462.79
1.0 471.03 470.87 471.36 471.21 471.29

Grey medium, T, = S00K, T, = 300K, 7, = 1. This study : ten directions on each hemisphere.

temperature differences less than 0.2 K are observed
(generally 2 x 10~ ? K) for about 100 intervals. It may
be noticed that the present method gives roughly the
same precision as the nodal method, using a smaller
number of intervals.

RESULTS

The model is illustrated for two media: a grey
medium (ideal case) and a glass (real case).

1. Grey medium

Influence of the interface configurations on tem-
perature profiles. The three mutual positions of the
semi-transparent material with respect to the opaque
walls are described in Fig. 1. Typical temperature
profiles related to these configurations are illustrated
in Fig. 6 for diffuse black walls and dominant radiative
transfer (N = 0.005). The representation is dimen-
sionless: 8 = (T—T)/(T,—T,) is plotted as a func-
tion of the depth X = 1 —-Z/Z,. T, is the temperature
of the hottest wall (right-hand side of the figure). The
dimensionless time f* is defined as t* = at/Z] with
a = AjpC, and the medium is supposed to be at tem-
perature T, at time ¢ = 0.

When contact between walls and vitreous interfaces
occurs on both sides (Fig. 6(a)), the temperature pro-
file exhibits an S-shape as expected. For the opposite
situation (no contact), the profile is nearly linear (Fig.
6(b)). The influence of contact on the transient behav-
iour is noticeable. Steady state is observed more rapidly
when the wall is in contact with the vitreous material :
steady state is reached for * = 1.9 for case (a) and
r* = 2.8 for case (b).

Effect of the boundary properties on temperature
profiles—optical properties of the wall. Two situations
have been compared : specular and diffuse reflections
on the opaque boundaries for three configurations
(Fig. 1).

Concerning the two configurations, contact or no
contact with the walls on both sides of the STCM,
our results are in agreement with the conclusions pro-

posed by Timmons and Mingle [9], Lii and Ozisik [10]
and Anderson and Viskanta [5] : the influence of the
wall reflection type may be neglected either during
transient heating or steady state conditions whatever
the values of the optical depth and refractive index.

This conclusion is modified when considering the
configuration (c) in Fig. 1: direct contact of the
vitreous medium with the wall on one side only. First,
concerning the side without any contact, the effect of
the reflection character of the wall or of the vitreous
interface may be neglected. However, on the other
side, significant differences are proved. Transient (¢F,
t¥) and steady state (¢¥) temperature profiles are plot-
ted in Fig. 7 for three values of the optical depth, 7,.
Dotted and solid lines relate to a diffuse or a constant
specular reflection of wall 2 respectively. The differ-
ences between temperature distributions are impor-
tant for both transient and steady state conditions
and they increase when the optical depth decreases.
The interaction conduction-to-radiation parameter N
proves to have some effect on the general shape of the
curves but no variation of the differences between the
profiles has been noticed.

Optical properties of vitreous interfaces. In this part
of the work no kind of contact between the walls and
the STCM is supposed to occur and two types of
transparent boundary are compared (see Fig. 8).

(a) An ideal vitreous boundary whose properties
are determined by the Fresnel laws and the refractive
index of the medium.

(b) An isotropic diffuse boundary whose optical
properties (reflectivity, transmittivity, emissivity) are
diffuse and isotropic. In this case the whole radi-
ative properties of the boundary are defined if one
of the factors and the refractive index are known
(hemispherical transmittivity air-to-glass = n’ hemi-
spherical transmittivity glass-to-air). They are cal-
culated on the basis of the hemispherical properties
of the vitreous interface corresponding to an isotropic
incident intensity (Fig. 8).

The advantages of this latter approach are, first, it
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FiG. 6. Typical transient temperature profile in a grey FiG. 7. Effect of the type of reflection on the transient tem-
medium as a function of the boundary configuration. (a), perature profile as a function of the optical thickness. Con-
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and 5), g, = 1, g, = 0.21.
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FiG. 8. Physical model of the isotropic diffuse boundary.

is an easy approximation for examining the influence
of non-ideal vitreous boundaries on temperature dis-
tribution (roughness, for example). Second, it is a
mathematical equivalence in the model (the cal-
culations are simplified) and it is useful to define the
range of parameters for which this equivalence may
be used.

In Fig. 9, the calculated temperature profiles for
both previous cases are compared as a function of
the optical depth. The differences between the ideal
vitreous boundary and the isotropic diffuse boundary
decrease when the optical depth and the time increase.
Temperature differences become very small for 7, > 5
and at steady state. No change of this conclusion is
observed as a function of N.

2. Molten glass bath

Previous illustration proves that significant modi-
fications of the temperature distribution are predicted
inside a grey STCM in contact with a black wall on
one side when the type of reflection of this wall is
modified (diffuse or specular). The objective of this
section is to examine the same problem for a real
medium such as molten glass.

The temperature distribution inside a 1 cm, 2 cm
and 5 cm deep molten glass layer is illustrated in
Fig. 10 for the following conditions: bottom wall,
T,=1200 K, &, =0.21; upper wall, T, = 1500 X,
g, = 1. Thermophysical properties of the glass are
detailed in Appendix B. A four-band model is used to
describe the variation of K, with wavelength. When
changing the reflection type of the bottom, the tem-
perature differences are less significant than observed
for the grey medium, but they do exist. This obser-
vation is due to the strong absorption of IR radiation
at the layer surface (K, — oo for 4 2 4 um).

Another illustration of this model is given in Fig.

D. SCHWANDER et al.
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FiG. 9. Comparison of ideal vitreous interfaces and isotropic

diffuse vitreous boundaries. Configuration (b). n = 2, N/t

(te=02) or N=5x10"2 (z1,=1 and 5), T,/T.=2,
g =¢& =1L

11. The temperature distribution in a 25 cm deep bath
is plotted at steady state with the bottom emissivity
(e,) as the parameter (diffuse reflection is assumed).
It may be noticed that the free boundary temperature
is almost affected by the change of ¢, but the thermal
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FIG. 10. Effect of the type of reflection (specular or diffuse)

on the transient temperature profile in glass as a function

of the depth. n = 1.52, T, = 1500 K, T, = 1200 K, ¢, = |,
&, = 0.21, ¢, are real times in seconds. Configuration (c).

gradient (heat flux) at Z = 0 exhibits large variations:
it reaches 10* K m~! forg; =0 and 4x10° K m™!
for &, = 1. The consequence of this observation on
heat transfer through the wall is very important.
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FiG. 11. Influence of the bottom emissivity on the steady
state temperature distribution in a 25 cm deep molten glass
layer. Configuration (c).

CONCLUSION

A general formulation and numerical solution of
heat transfer in STCM is proposed in order to examine
various interface configurations. The more significant
results are the following.

When both interfaces of a vitreous grey material
are in contact or without any contact with the opaque
walls on both sides the temperature difference cal-
culated when changing the type of reflection on the
walls (specular or diffuse) may be neglected. For the
latter configuration (no contact) the temperature dis-
tribution is modified when the vitreous boundary
properties are changed.

If only one side of the grey STCM is in contact with
a wall, the temperature distribution is affected by a
modification of the type of this side reflection. The
differences decrease when the optical depth of the
medium increases.

The previous conclusions also hold for a glass layer
but the differences are smaller due to the strong
absorption of IR radiation at the glass surface.
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APPENDIX A. DEVELOPMENT OF
EQUATIONS FOR THE CALCULATION OF
diV qr.l(Zi)
The expressions of the elements of the vectors §/ and
S; are as follows:
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APPENDIX B. THERMOPHYSICAL
PROPERTIES OF GLASS

For calculations, the following properties have been used :
£ =093+8x107*T(Wm™'K"~')
p=24x10"kgm™’

C,=117x10"Jkg™' K.

The variation of K, with wavelength is a simplified rep-
resentation of the band model developed by Ades et al. [20].
it is listed in Table Bl.

Table Bi. K, vs £

04 </ <272 um K.=16m ', T=1200K
K.=2lm™ ' T=1500K

272 < £ <437 um K,=450m ' 1200 < T < 1500 K

4 >4.37 um g =1

n, = 1.52.



Temperature distributions in semi-transparent media

INFLUENCE DES PROPRIETES DES INTERFACES SUR LA DISTRIBUTION
TRANSITOIRE DE TEMPERATURE DANS UN MILIEU SEMITRANSPARENT
CONDENSE NON DIFFUSANT

Résumé-—Une méthode originale de calcul du profil de température en régime dynamique dans un milieu
semi transparent non diffusant condensé est présenté. La méthode est destinée 4 'examen théorique détaillé
de linfluence des propriétés des interfaces sur le profil de température. On compare les distributions
obtenues avec des parois a réflexion diffuse et spéculaire dans trois configurations: contact direct des
interfaces vitreuses avec les parois, aucun contact, contact sur une face seulement. Dans le cas d’un milieu
gris, des différences notables sont mises en évidence pour la derniére configuration d'interfaces. Les
distributions de température obtenues a partir d'interfaces vitreuses pour deux types de propriétés, régles
de Fresnel—propriétés diffuses, dans le cas d'une configuration sans contact sont également comparés. Des
différences significatives sont mises en évidence. Dans le cas d’une couche de verre, les mémes différences
sont observées mais de fagon moins accentuée i cause de I'opacité du verre au deld de 4 ym.

EINFLUSS DER GRENZFLACHENEIGENSCHAFTEN AUF DIE TRANSIENTEN
TEMPERATURVERTEILUNGEN IN KONDENSIERTEN HALBDURCHLASSIGEN
MEDIEN

Zusammenfassung—Es wird ein neues Verfahren fiir die Berechnung der transienten Temperaturverteilung
in einem halbdurchlissigen nichtstreuenden kondensierten Medium vorgeschlagen, das sowohl Strahlung
als auch Leitung beriicksichtigt. Das Verfahren wurde entwickelt. um den EinfluB der Grenzflichen-
eigenschaften auf die Temperaturverteilung detailliert zu untersuchen. Die diffuse und die Gesamtre-
flexion der Wiinde werden fiir ein graues Medium und drei Situationen verglichen: Kontakt der glisernen
Oberflichen mit den Winden an beiden Seiten. kein Kontakt und Kontakt an nur einer Seite. Im letzten
Fall ergeben sich groBe Unterschiede. Fiir den Fall. bei dem kein Kontakt zu den Winden besteht.
wird ein Vergleich zwischen glisernen Oberflichen. die den Fresnel-Gesetzen gehorchen, und diffusen
Oberflichen angestellt. Wichtige Unterschiede werden dabei aufgezeigt. Fiir eine Glasschicht kénnen die
Unterschiede nicht vernachléssigt werden. aber man kann sie durch das groBe Absorptionsvermdgen im
Infrarotbereich reduzieren.

BJIMSTHUE TPAHHUUYHBIX CBONCTB HA HECTALIMOHAPHOE PACIPEJENEHUE
TEMIEPATYP B KOHAEHCHPOBAHHLIX MOJIYIIPO3PAUHLIX CPEJAX

Amoramun—IIpeioxen OpurHHaNbLHEI METOX PacueTa HECTALUOHAPHOTO PACTIPEAEICHHS TEMIIEPATYD
B MOJYNIPO3pa4HOR HEpaccenBaloulell KORICHCHPOBAHHOMR Cpelle, yHHTHIBAIOLINH HATYYEHHE i TEMIONpo-
BOAHOCTb. MeTon pa3paboTan ¢ UenbIO YTOUHEHRS BIMARHA CBOMCTB Mex(a3HOM rpaHMULI HA pachpe-
JeneHue TemnepaTyp. Buimonneno cpasuenue Inddy3HOro # 3epxajibHOrO oTpaXeHHi CTEHOK AN
cepoft cpensl B Tpex ciyyasx. [IpopeieHO CPaBHEHHE CTEKIOBHIMBIX MEXK(DAIHBIX IPAHULL NPH BLINONHE-
HEH 3axona Ppenens n npu auddy3HOM oTpaxeHHH B Ciiydae mOBOro KOHTAKTa MEXNY CTEHKAMM K
NONYNpO3pauHoi KOHACHCHPOBAHHOH Cpenoi, o6GHapyxHBalolilee UX CyLIeCTBEHHOE pasnuyue. B cayvae
CIIOA U3 CTEXJIa MM HeJb3s npeHeGpeys, XoT4 B HHGpaKpacHok 06/1aCTH OHO 3HAYMTENLHO YMEHbILIACTCH
B CHITy BLICOKO#i MOTIOWATENbHO! CROCOGHOCTH.,
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