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Abstract-An original method for the calculation of transient temperature distribution in a semi-trans- 
parent non-scattering condensed medium accounting for radiation and conduction is presented. This 
method was developed in order to detail the influence of interface properties on temperature distribution. 
Diffuse and specular reflections of the walis for three situations (contact of the vitreous boundaries with 
the walls on both sides, any contact on both sides and contact on one side only) are compared for a grey 
medium. Large differences are shown for the latter case. Concerning the situation with any contact between 
walls and the STCM, a comparison between vitreous interfaces governed by Fresnel laws and diffuse 
vitreous interfaces is given. Significant diierences are pointed out. For a glass layer the differences cannot 

be neglected, but they are reduced because of high absorptivity in the IR range. 

INTRODUCTION 

A GREAT deal of work has been reported concerning 
combined heat transfer in the following simplified 
situation : a semi-transparent non-scattering planar 
grey layer bounded by grey diffusely emitting and 
reflecting surfaces [l-4]. Subsequently, more realistic 
situations were examined in the field of non-scattering 
media. They are related to (i) the variation of optical 
properties with wavelength [5, 61, (ii) the nature of 
reflection at the boundary (specular reflection) [5], 
(iii) the mutual position of semi-transparent and 
opaque boundaries [7, 81. Nevertheless, for one- 
dimensional systems, a general model taking into 
account most real situations is needed. 

This paper presents a theoretical study of unsteady 
conductive and radiative heat transfer in a semi-trans- 
parent condensed material (STCM), accounting for : 
the variations of physical and optical properties of 
the medium with wavelength and temperature; the 
angular dependence of the reflection coefficient at the 
boundaries; the nature of reflection from the opaque 
boundaries; the position of the opaque wall with 
respect to the vitreous boundary. 

Concerning the latter parameter, three situations 
have been examined according to the following con- 
siderations: the semi-transparent interfaces may be 
separated from the opaque boundary by a gap or may 
be in contact with it. The mutual position of both 
STCM boundaries and opaque walls leads to the three 
cases shown in Fig. 1. 

(a) Conductive contact between the opaque wall 
and both STCM boundaries. A number of studies 
have been devoted to the analysis of heat transfer in 
this situation. The effects of the nature of reflection 

on the opaque wall on the temperature field have been 
examined by Timmons and Mingle [9] and Lii and 
Ozisik [lo] ; very small differences have been reported. 

(b) No contact between opaque walls and the 
STCM boundaries. In this case the reflection at the 
vitreous boundary is governed by Fresnel laws. The 
results are less numerous than for the previous case. 
Stepanov et al. [7] have compared situations (a) 
and (b). 

(c) Conductive contact on one STCM boundary 
and a non-conductive gap on the other side. Inves- 
tigations concerning this situation are very poor. 
Some data are given by Marcher&o et al. [8]. Sig- 
nificant temperature differences have been reported 
as a function of the nature of reflection. 

In the first part of this paper the theoretical model 
and the numerical method are presented. The influ- 
ence of the nature of reflection of the opaque wall on 
the temperature distribution in the STCM is then 
examined for the three cases (a), (b) and (c). Finally, 
results related to a glass layer in the third situation (c) 
are discussed. 

THEORETICAL ANALYSIS 

Mathematicalformulation 
We consider a flat layer of non-scattering semi- 

transparent condensed material of thickness Z0 
located between two specularly or diffusively reflect- 
ing surfaces of temperatures T, and T2 (T, > Tz). 
These opaque boundaries may either be in contact 
with the vitreous interface (on one side or on both 
sides) or placed at some distance away from the layer. 
In the latter case the gap between the layer and the 
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NOMENCLATURE 

CP specific heat P density 
L(x) Id exp ( - 414@‘- * dcl Q Stefan-BoltzmaM constant 
/ intensity ? optical depth, 7, = K,Z 
f0 black body intensity 70 optical thickness 
K number of directions p* Ok weight in the Gaussian formulation. 
K spectral absorption coefficient 
n number of space intervals or total Subscripts 

refractive index C conductive 
n” spectral refractive index i space index 
N 1K/4n2aT; I spectral band, Av 

4 flux density k direction 
I time r radiative 
T temperature 172 boundaries 1 and 2 
x reduced space coordinate, I -Z/Z, + hemisphere (+) : 0 < p < 1 
Z space coordinate - hemisphere(-): -1 <,L<O. 

Zo depth of the medium. 
Matrices 

Greek symbols (4) order K diagonal matrix 
& emissivity (I), (s), (G) order K column matrices 
9 reduced temperature, (T- T,)/( T, - T2) (Id) identity matrix 
A thermal conductivity (p,,,) order K square matrix related to the 

pk angular variable, 1 < k < K (p = cos 0) boundaries j = 1,2. 

FIG. 1. Physical representation of the three situations occurring between walls and a vitreous medium 
layer. 

with 

pCpg= -div (qC+qr) 

/V/V////// 

wall is filled with a non-conductive medium with a 31 3T , l?r 

refractive index of unity (Fig. 2). 
divq, = --aT a~ -AZ 

0 
(2) 

At unsteady state the governing equations are 
and 

(1) 
m divq, = J div ql,. dv = 
0 

cc 

2n J (J div ’ [I,.+ (Z, 14 -I; (Z, - ~11~ dp 
0 0 > 

dv (3) 

TISI where I,’ and Z; are the spectral intensities in the 
forward (b > 0) and backward (p < 0) directions. 
The spectral radiative flux qr,, may be expressed as 

div hr.,) = K, 4nn,'?V(7)) 

z=z,,T=T, I 
-2n 

FIG. 2. Physical model (case (c)). [J I,‘(O,PO exp (-7:~) dp 
0 
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J 
I 

+ 1; (ro,.. -14 ew [- bo.. -WI dp 
0 

+n,2 
J 
rlf(T(f))E,(r-r’) dr’ 

0 

‘0.. 

+fl,Z 

I 

c(T(r’))E,(r’-r) dr’ 11 (4) 

where 

(Kv is the spectral absorption coefficient), $ the 
Planck function and 

J I E,(x) = exp (-xIPW’ dp. 
0 

The discrete ordinate method appears to be most 
commonly adopted for complex boundary conditions. 
For example, where Fresnel reflection is concerned, 
the hemisphere may be divided into several sectors in 
order to take into account the angular variation of 
the reflection coefficient [A (Fig. 3). In addition, a 
Gaussian quadrature is generally used to perform the 
angular integration of the radiation intensity. Among 
previous works in this field, two numerical techniques 
were proposed : (i) numerical solution of the radiation 
transfer equation by superposition of the homo- 
geneous solutions satisfying the boundary conditions 
on the intensities [5]; (ii) numerical solution of the 
expanded equations, consisting of the development of 
integration procedures. We chose the latter solution. 

For a given temperature profile T(Z), the spectral The integration of (1) with respect to time t is 
intensities at the boundaries r = 0, I:(O,l) and performed using the implicit finite difference Crank- 
T = 50, 1; (TO.“, -p) are solutions of the general Nicolson method. Concerning the space coordinate, 
boundary conditions a variable interval grid is used. 

1: (T~.~, p) = 1,’ (0, ~0 exp (-ro,J~) 
Methods for integrating equation (3) with respect 

to wavelength angle and optical coordinate are the 
following. 

+n,” _ exp I- (zo,” -+A dr (5) 

‘O.- 
+?I; J c (T(r)) 

~ exp (- G4 dr (6) 
0 P 

(8) 

The functions pl(p,$) and G:(p) (i = 1 and 2) are 
related to the nature of reflection at boundaries 1 and 
2 and to the type of contact with the vitreous interface 
and the opaque wall. 

Numerical solution 
Previous numerical works about heat transfer in 

condensed semi-transparent media may be examined 
from the boundaries properties point of view. 

D$use reflection from the opaque wall. The angular 
variation of the spectral intensity can be ignored when 
solving the equations. The theoretical studies of Heas- 
let and Warming [ll], Viskanta [12] and Hottel and 
Sarofim [13] are related to this assumption. The zon- 
ing method [13] was extended to problems with con- 
stant specular reflection by Eckert and Sparrow [14]. 
Nevertheless, this method seems to be invalid for 
modelling complex boundaries. 

Angular variation of properties at the boundaries 
(wall and vitreous interface). Various numerical 

methods have been developed: the spherical har- 
monics method, the moment method, the normal 
modes method [ 151, the discrete ordinates method [ 161 
and the Monte Carlo method [ 17. 

(1) Wavelength. The spectral variation of the 
absorption coefficient is introduced using a band 
model. If we define A4 bands (index Z), equations (4)- 
(8) may be formulated on each band by substitution 
of index Ifor v, and equation (3) can then be expressed 
as 

div q, = ,g, div q+ (9) 

(2) Angular direction. A lixed number (K) of discrete 
directions (pk) is considered and the directional inte- 
grals are replaced by weighted sums according to a 
Gaussian formulation 

(3) Optical coordinate. The optical thicknesses 
r ,, . . . , Ti, . . . , ?N correspond to the space coordinates 
z I,‘“, z,, . . .) Z,. The integration of equations such 
as 

J ,” @‘VW1 exp (--d14/d dp 

are performed on the basis of a linear approximation 
of L,O[T(r)]. Concerning integrals 

s 
rUn:~[T(r’)]E,(lr-z~l) dr’ 

0 

the approximations are shown in Fig. 4. In order to 
perform the integration at r = r,, Lf is expressed as a 
linear function of I at any point of the grid except for 
r = T,, where a second order polynomial approxi- 
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P(6 

1 

transition 

zone 

FIG. 3. ReSection of radiation on an ideal vitreous interface. 

mation is introduced. For T = 0 and T = T,, (bound- 
aries), a linear approximation is used. 

Numerical procedure 
At time t, q,+,is calculated according to the following 

steps. 
Calculation of intensities at the interfaces. The 

matrix formulation of equations (5) and (6) may be 
written as 

(Z: (To,,)) = @I) (Z: (0)) + (s: ) (5a) 

(Z; (0)) = (&)(I; (TO.,)) + (SF) (6a) 

where (E,) is a diagonal K order matrix, the diagonal 
elements of which are exp (- ~~,,/j&) ; (S,‘) and (S;) 
are vectors corresponding to the integrals of equations 
(5) and (6). The discrete expressions of ST and S; 
are developed in Appendix A. 

The matrix formulations of equations (7) and (8) 
are 

(1: (0)) = (P d(G (0)) + (G,,,) W 

(I;(To,,)) = (Pd(I: (To.,)) + (G,,). (84 
The elements of square K order matrix (p,,) and 

column matrix (G,) are given by the boundary prop- 
erties. Taking into account the relations (5a)-(8a), 
two K order linear systems are deduced and solved to 
determine (ZT (0)) and (I; (ro.,)) in order to calculate 

div qsP 
The following K order linear system is obtained : 

[(~d)-(p,.,)(~,)(p,,)(~,)l(Z:(O)) = (P,,)(F) 

+ (G,,,)+(p,,)(E,)[(p,)(S:) + (%,)I C’b) 

[(ld)-(p,,)(E,)(p,,,)(E,)l(z;(T,,)) = (Pds:) 

+(G~J)+(P~.,)(EI)((PzJ)(S;)+(GI,I)). @b) 

Calculation of div qr,. This calculation is performed 
on the basis of equation (4) expressed on a band I. It 
takes into account the intensities at the boundaries: 

A c 
? 
r order 2 polynomial z 
z linear F 
00 linear 1 o= 

e--vu--_ _ 

_-Y 
.7 I 

.’ 
0.I 0 

1 . 
I I 
I I 

I 
’ I I 

I 1 
I + I 

linear 

T1=0 71-l ri 71+1 -rN C-TO” 71= 0 

for 24IdN - 1 for I 

(4 

FIG. 4. Schematic of the space integration method. 

=l or 

(b) 

7N =70,. 

i=N 
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Table 1. Situations described by the model 

Core of the STCM Boundaries 

Variable t T v p T v p 

Contact or 
General no contact 

formulation yes - yes yes with walls 

Parameters 
K - yes yes - 

- Yes Yes - 
p& -yes- - 
Ii, Ptj* 6j - - - - yes yes Y= 

I:(O) and I;(x& and the temperature distribution 
(using the Planck function; Appendix A). 

Model performances and limitations 
The situations described by the previously for- 

mulated model are listed in Table 1. Most of the 
real situations encountered when studying heat trans- 
fer in condensed one-dimensional semi-transparent 
materials may be examined by this model. 

The numerical solution proposed in this paper is 
original and may be compared with the zonal method, 
both being adapted for calculations using a variable 
mesh grid. Nevertheless, some limitation of the latter 
method is illustrated in the case of optically thick 
material. 

Let us consider a grey medium divided into a finite 
number of elements AZ so that Ar = MZ >> 1. At 
any point of the medium, the divergence of the radi- 
ative flux is expressed as 

zonal method : 

div qJZ,) = -do T4(Z,+ I)--2T4(4) + T4(Z,- t) 
AZ 

this method : 

divq,(Z,) = - 34&~ 
T4(Z,+ I) -2T4(Z,) + T4(Zi_ ,) 

(AZ)’ . 

It may be noticed that the second formulation is 

T-1 7i 7i+l r 

(a) 

1689 

in agreement with Rosseland’s approximation. This 
difference between the two methods is due to the 
approximation on P in the vicinity of Zi (internal 
AZ). For the zonal method, P(Z,) is constant for 
Z,-AZ/2 G Zi Q Zj+ AZ/2 ; for the present method 
P(Z,) is expressed as a second order polynomial in 
the same range. 

This observation is illustrated in Fig. 5. As pointed 
out by Kunc [18], the accuracy of the calculations by 
the zonal method depends on the optical depth Ari: 
for Ari > 0.2, the numerical error in the intensity cal- 
culation increases with Ar,. For example, it reaches 
4% for Ari = 0.5. For AriG 0.2 no difference be- 
tween exact and numerically calculated intensities is 
observed. 

In the case of pure radiative transfer or strong 
absorption at the boundary, a fine discretization is 
needed to obtain a good representation of the tem- 
perature profile’s local shape. 

In order to compare the present numerical solution 
with previous results, calculated values of the tem- 
perature distribution are listed in Table 2 for the 
example proposed by Saulnier [4] : a grey medium in 
contact with two black walls at temperature T, = 500 
K and T2 = 300 K, respectively (in addition 1= 0 and 
r0 = 1). Our results [19], obtained by dividing each 
hemisphere in ten directions, are compared with data 
published by Heaslet and Warming [I l] and Saulnier 
[4] for two grids. Results are in good agreement: 

AT SAT 
L 

IO, (T(T)) 

*i-l Ti Ti+l T 

(bl 
FIG. 5. Representation of I” at the mode T+ (a) Zonal method. (b) This method. 
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Table 2. Numerical solution comparison 

Heaslet and Saulnier [4] This study Saulnier [4] This study 
X Warming [I I] (23 nodes) (1 I points) (103 nodes) (101 points) 

0 382.36 382.85 381.68 382.04 381.80 
0.1 395.75 396.42 396.19 396.49 396.50 
0.2 406.70 407.29 407.16 407.32 407.30 
0.3 417.57 416.78 416.69 416.78 416.76 
0.4 424.67 425.41 425.36 425.4 1 425.39 
0.5 433.75 433.45 433.43 433.45 433.43 
0.6 441.73 441.06 441.08 441.06 441.05 
0.7 447.76 448.39 448.44 448.39 448.38 
0.8 456.01 455.56 455.63 455.56 455.54 
0.9 463.29 462.84 462.99 462.82 462.79 
1.0 471.03 470.87 471.36 471.21 471.29 

Grey medium, T, = 500 K, Tz = 300 K, q, = I. This study : ten directions on each hemisphere. 

temperature differences less than 0.2 K are observed 
(generally 2 x 10e2 K) for about 100 intervals. It may 
be noticed that the present method gives roughly the 
same precision as the nodal method, using a smaller 
number of intervals. 

RESULTS 

The model is illustrated for two media: a grey 

medium (ideal case) and a glass (real case). 

1. Grey medium 
Influence of the interface configurations on tem- 

perature profiles. The three mutual positions of the 
semi-transparent material with respect to the opaque 
walls are described in Fig. 1. Typical temperature 
profiles related to these configurations are illustrated 
in Fig. 6 for diffuse black walls and dominant radiative 
transfer (N = 0.005). The representation is dimen- 
sionless : 0 = (T- T2)i( T, - T2) is plotted as a func- 
tion of the depth X = 1 -Z/Z,,. T, is the temperature 
of the hottest wall (right-hand side of the figure). The 
dimensionless time t* is defined as t* = at/Z; with 
a = I./PC,, and the medium is supposed to be at tem- 
perature T2 at time t = 0. 

When contact between walls and vitreous interfaces 

occurs on both sides (Fig. 6(a)), the temperature pro- 
file exhibits an S-shape as expected. For the opposite 
situation (no contact), the profile is nearly linear (Fig. 
6(b)). The influence of contact on the transient behav- 
iour is noticeable. Steady state is observed more rapidly 
when the wall is in contact with the vitreous material : 
steady state is reached for t* = 1.9 for case (a) and 
t* = 2.8 for case (b). 

Effect of the boundary properties on temperature 
profiles-optical properties of the walk Two situations 
have been compared : specular and diffuse reflections 
on the opaque boundaries for three configurations 
(Fig. 1). 

Concerning the two configurations, contact or no 
contact with the walls on both sides of the STCM, 
our results are in agreement with the conclusions pro- 

posed by Timmons and Mingle 191. Lii and Ozisik [lo] 
and Anderson and Viskanta [5] : the influence of the 
wall reflection type may be neglected either during 
transient heating or steady state conditions whatever 
the values of the optical depth and refractive index. 

This conclusion is modified when considering the 
configuration (c) in Fig. 1: direct contact of the 
vitreous medium with the wall on one side only. First, 
concerning the side without any contact, the effect of 
the reflection character of the wall or of the vitreous 
interface may be neglected. However, on the other 
side, significant differences are proved. Transient (t:, 
t:) and steady state (t:) temperature profiles are plot- 
ted in Fig. 7 for three values of the optical depth, T,,. 
Dotted and solid lines relate to a diffuse or a constant 
specular reflection of wall 2 respectively. The differ- 
ences between temperature distributions are impor- 
tant for both transient and steady state conditions 
and they increase when the optical depth decreases. 
The interaction conduction-to-radiation parameter N 
proves to have some effect on the general shape of the 
curves but no variation of the differences between the 
profiles has been noticed. 

Optical properties of vitreous interfaces. In this part 
of the work no kind of contact between the walls and 
the STCM is supposed to occur and two types of 
transparent boundary are compared (see Fig. 8). 

(a) An ideal vitreous boundary whose properties 
are determined by the Fresnel laws and the refractive 
index of the medium. 

(b) An isotropic diffuse boundary whose optical 
properties (reflectivity, transmittivity, emissivity) are 
diffuse and isotropic. In this case the whole radi- 
ative properties of the boundary are defined if one 
of the factors and the refractive index are known 
(hemispherical transmittivity air-to-glass = n* * hemi- 
spherical transmittivity glass-to-air). They are cal- 
culated on the basis of the hemispherical properties 
of the vitreous interface corresponding to an isotropic 
incident intensity (Fig. 8). 

The advantages of this latter approach are, first, it 
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0.1) 
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0.0 0.2 0.4 O.@ 0.8 1.0 

X 
(c) 

FIG. 6. Typical transient temperature protie in a grey 
medium as a function of the boundary configuration. (a), 

(b), (c) : see Fig. 1. n = 2, N = 0.005, e, = E* = I. 

e 
t 

7, IO.2 

0.0 

0.0 

0.4 

0.2 

0.0 0.2 0.4 0.1 0.2 3.0 

X 

0.2 0.4 OS 0.2 1.0 

X 
(W 

0.* 

0.4 

0.2 

0.0 0.2 0.4 0.2 0.0 

X 
a 

(cl 
FIG. 7. Effect of the type of reflection on the transient tem- 
perature profile as a function of the optical thickness. Con- 
iigm=ation(c).n=2,N/r~(ro=0.1)orN=5xi0~’(zo= 1 

and S), st = I, ez = 0.21. 
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I 
- TE** - :** 

FIG. 8. Physical model of the isotropic diffuse boundary. 

is an easy approximation for examining the influence 
of non-ideal vitreous boundaries on temperature dis- 
tribution (roughness, for example). Second, it is a 
mathematical equivalence in the model (the cal- 
culations are simplified) and it is useful to define the 
range of parameters for which this equivalence may 
be used. 

In Fig. 9, the calculated temperature profiles for 
both previous cases are compared as a function of 
the optical depth. The differences between the ideal 
vitreous boundary and the isotropic diffuse boundary 
decrease when the optical depth and the time increase. 
Temperature differences become very small for 7. > 5 

and at steady state. No change of this conclusion is 
observed as a function of N. 

2. Molten glass bath 
Previous illustration proves that significant modi- 

fications of the temperature distribution are predicted 
inside a grey STCM in contact with a black wall on 
one side when the type of reflection of this wall is 
modified (diffuse or specular). The objective of this 
section is to examine the same problem for a real 
medium such as molten glass. 

The temperature distribution inside a 1 cm, 2 cm 
and 5 cm deep molten glass layer is illustrated in 
Fig. 10 for the following conditions: bottom wall, 
T, = 1200 K, s2 = 0.21; upper wall, T, = 1500 K, 
E, = 1. Thermophysical properties of the glass are 
detailed in Appendix B. A four-band model is used to 
describe the variation of K. with wavelength. When 
changing the reflection type of the bottom, the tem- 
perature differences are less significant than observed 
for the grey medium, but they do exist. This obser- 
vation is due to the strong absorption of IR radiation 
at the layer surface (Kv - a for i > 4 pm). 

Another illustration of this model is given in Fig. 

I * 1.. I I * I * J 
0.0 0.1 0.4 0.. 0.. 1.0 

X 
(a) 

0.0 0.2 0.4 0.8 0.8 I.0 

X 
(b) 

0 - - - -- Ol,,“.. 

0.8 T.= 8 - 

0.4 . 

0.0 0.2 0.4 0.4 0.. 1.0 
X 

(cl 

FIG. 9. Comparison of ideal vitreous interfaces and isotropic 
diffuse vitreous boundaries. Configuration (b). n = 2. N/r: 
(q, = 0.2) or N = 5x IO-’ (TV = 1 and 5). TJT, = 2, 

E,=El=l. 

11. The temperature distribution in a 25 cm deep bath 
is plotted at steady state with the bottom emissivity 
(EJ as the parameter (diffuse reflection is assumed). 
It may be noticed that the free boundary temperature 
is almost affected by the change of c2 but the thermal 



Temperature distributions in semi-transparent media 1693 

t 

Zo.lcm - 8p8culrr 
9 --- dlffu8. 

0.0 

0.8 

0.4 . 
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c 

0.s . 

0.0 0.2 0.4 0.0 0.a 1.0 

X 
(W 

e 
t 

ZO= 5cm 

0.8 

0.6 - 

0.0 0.2 0.4 0.. 0.. 1.0 

X 
(‘3 

FIG. 10. Effect of the type of reflection (specular or diffuse) 
on the transient temperature profile in glass as a function 
of the depth. n = 1.52, T, = 1500 K, T2 = 1200 K, E, = I, 

e2 = 0.21, r, are real times in seconds. Configuration (c). 

gradient (heat flux) at Z = 0 exhibits large variations : 
it reaches lo4 K m-’ for a2 = 0 and 4x 10’ K m-’ 
for e2 = 1. The consequence of this observation on 
heat transfer through the wall is very important. 

1.0 

zo= 25cm 
e - 

0.0 - 

FIG. 1 I. Influence of the bottom emissivity on the steady 
state temperature distribution in a 25 cm deep molten glass 

layer. Configuration (c). 

CONCLUSION 

A general formulation and numerical solution of 
heat transfer in STCM is proposed in order to examine 
various interface cotigurations. The more significant 
results are the following. 

When both interfaces of a vitreous grey material 
are in contact or without any contact with the opaque 
walls on both sides the temperature difference cal- 
culated when changing the type of reflection on the 
walls (specular or diffuse) may be neglected. For the 
latter configuration (no contact) the temperature dis- 
tribution is modified when the vitreous boundary 
properties are changed. 

If only one side of the grey STCM is in contact with 
a wall, the temperature distribution is affected by a 
modification of the type of this side reflection. The 
differences decrease when the optical depth of the 
medium increases. 

The previous conclusions also hold for a glass layer 
but the differences are smaller due to the strong 
absorption of IR radiation at the glass surface. 
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APPENDIX A. DEVELOPMENT OF 
EQUATIONS FOR THE CALCULATION OF 

div s&J 

The expressions of the elements of the vectors ST and 
S; are as follows : 
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APPENDIX B. THERMOPHYSICAL 
PROPERTIES OF GLASS 

For calculations, the following properties have been used : 

i =0,93+8x IO-‘T(W In-’ K-‘) 

p =2.4x IO’kgm- 

C, = 1.17x IO’J kg-’ K-j 

The variation of Kv with wavelength is a simplified rep- 
resentation of the band model developed by Ades ef al. [20]. 
It is listed in Table B I. 

Table B I. K, vs i 

0.4 < i < 2.72 nrn K, = 16m-‘,T= 12OOK 
K,, = 21 m-‘, T= 1500 K 

2.72 c. L < 4.37 nrn K,=.l50m~~‘,l200<Tcl500K 

L > 4.37 Atrn E, = I 

n, = I.52 
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INFLUENCE DES PROPRIETES DES INTERFACES SUR LA DISTRIBUTION 
TRANSITOIRE DE TEMPERATURE DANS UN MILIEU SEMITRANSPARENT 

CONDENSE NON DIFFUSANT 

Risumit-Une methode originale de calcul du protil de temperature en regime dynamique dans un milieu 
semi transparent non diffusant condense est p&se&. La mithode est destined H I’examen thiorique dttaillt 
de l’influence des proprietts des interfaces sur le profil de temperature. On compare les distributions 
obtenues avec des parois a reflexion diffuse et sp&ulaire dans trois configurations: contact direct des 
interfaces vitreuses avec les parois, aucun contact, contact sur une face seulement. Dans le cas d’un milieu 
gris, des diffkences notables sont mises en evidence pour la demitre configuration d’interfaces. Les 
distributions de temperature obtenues a partir d’interfaces vitreuses pour deux types de propti&ts, rtgles 
de Fresnel-propriGs diffuses, dans le cas dune configuration sans contact sont tgalement compares. Des 
differences signhicatives sont mises en evidence. Dans le cas dune couche de verre. les mimes differences 

sont observ&es mais de facon moins accent&z a cause de I’opaciti du verre au delh de 4 pm. 

EINFLUSS DER GRENZFLACHENEIGENSCHAFTEN AUF DIE TRANSIENTEN 
TEMPERATURVERTEILUNGEN IN KONDENSIERTEN HALBDURCHLASSIGEN 

MEDIEN 

Zusnmmenfassung-Es wird ein neues Verfahren fur die Rerechnung der transienten Temperaturverteilung 
in einem halbdurchlassigen nichtstreuenden kondensierten Medium vorgeschhtgen, das sowohl Strahlung 
als such Leitung beriicksichtigt. Das Verfahren wurde entwickelt. urn den Einflui3 der Grenzfhichen- 
eigenschaften auf die Temperaturverteihrng detdihiert zu untersuchen. Die diffuse und die Gesamtre- 
flexion der Winde werden fiir ein graues Medium und drei Situationen verglichen: Kontakt der gllsernen 
Oberfbichen mit den Wiinden an beiden Seiten. kein Kontakt und Kontakt an nur einer Seite. Im letzten 
Fall ergeben sich groge Unterschiede. Fur den Fall. bei dem kein Kontakt zu den WBnden hesteht. 
wird ein Vergleich zwischen gkernen Oherfliichen. die den Fresnel-Gesetzen gehorchen, und diffusen 
OberHBchen angestellt. Wichtige Unterschiede werden dabci aufgezeigt. Fur eine Glasschicht kijnnen die 
Unterschiede nicht vernachliissigt werden. aber man kann sie durch das grol3e Absorptionsvermijgen im 

Infrarotbereich reduzieren. 

BJIMRHME I-PAHHYHMX CBORCTB HA HECTAIIHOHAPHOE PACI-IPEJ@JIEHME 
TEMI’IEPATYP B KOH~EHCHPOBAHHMX ITOJIYTIPO3PA‘IHbIX CPEAAX 

AmmrBuueIIpeanorteB OpWHHaJIbHbIfi Meron pacre-ra HecramiofiapHoro pacnpeneneknin Tehmeparyp 
a nony11po3pa~eoii Hepacceimaloureii roKnewxponatuiok cpene, yuaTbmaromB HvryveHHe H rertnonpo- 
BOAHOCTb. Mnonpa3pa60raHC UeJlbIOyTo~ReHHK BJIHRHHI CBOiiCTB blCXC@3HOk~aHHW Ha PaCllpC- 

neneHsie reunepaTyp. BbInonHeHO CpasBeBBe 1~1ij@y3~oro H 3epranbworo orpareti&I creHori MR 
Cepofi CpeAbl B lI3eX Uly’taBx. HpoBeBeHO cI)aBHeHHe cTeBBOBBAliL.IX Me+DHblX rpaHHU IlpH BbllIOJlHe- 

HHH 3aroHa @~EH~JIX H IIPH ~1Hc#n$y3Hob4 0TpaxemH B cnyvae mo6oro KoHTaCTa bsexny creHKam H 

llOJI~O3pa'lHOii KOHneHCH~MHHOP~AOii,o6Hapyr;HBa~~~ HXCyIIieCTBeHHOe fxl3JlHUHe. Bcnyvae 
cnOKH3creKnaHMHenb3RnpeHe6peSb.XOTK BHH@paKpaCHOfi o6nacra OHO3Ha=tBTenbHO yMeHbUIaeTCR 


